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We investigate the self-organization of two-dimensional activator-inhibitor discrete bistable systems in the
neighborhood of a nonequilibrium Ising-Bloch bifurcation. The system exhibits an anomalous transition—
induced by discretization—whose signature is the coexistence of Ising and Bloch walls for selected values of
the spatial coupling. After curvature reduction of Bloch walls, coexistence gives rise to a unique and striking
spatiotemporal dynamics: Bloch walls drive the motion and Ising walls play the role of “extended defects”
oriented along the background grid directions. Strong enough external noise asymptotically restores the sce-
nario found in the continuum limit.
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INTRODUCTION

The nonequilibrium Ising-Bloch �NIB� transition has been
identified as an important mechanism of pattern formation in
reaction-diffusion �1–4�, optical �6,7�, and liquid-crystal sys-
tems �8,9�. It consists of a pitchfork bifurcation where a sta-
tionary �Ising� front loses stability to a pair of counterpropa-
gating �Bloch� fronts. These Bloch fronts connect the same
asymptotic states but they propagate in opposite directions,
reflecting a nonvariational dynamics.

For NIB transitions in the continuum, the destabilization
of an Ising front is initiated by a critical eigenvector that
coincides with the translational �Goldstone� mode at the
critical point �10�. The bifurcated fronts may produce com-
plex spatiotemporal phenomena involving traveling domains
and spontaneous nucleation of spiral waves followed by do-
main breakup �11–14�. This bifurcation is also closely related
to chiral symmetry breaking in magnetic domain walls �15�
and forced oscillatory systems �16�.

Activator-inhibitor kinetics like the FitzHugh–Nagumo
�FHN� model provide a canonical example: a diffusing auto-
catalytic species �activator� produces a second substance �in-
hibitor� in a different time scale, which in turn consumes the
activator, thus introducing a negative feedback. For fast in-
hibitors and in the bistable regime, the dynamics exhibit
Ising fronts. For sufficiently slow kinetics—in fact, for the
activator-inhibitor time-scales ratio � below a critical thresh-
old �c—Bloch fronts are the stable interface. Structurally,
Bloch fronts differ from an Ising front in that the inhibitor
steplike profile is displaced with respect to that of the acti-
vator. The magnitude and the sign of the displacement deter-
mine the speed and direction of propagation, respectively.
The velocity c of the bifurcated fronts follows �asymptoti-
cally� a square-root law: c���c−� �4�.

In two spatial dimensions, in the Ising regime one finds
Ising walls �IWs�, and eventually the systems converges to a
uniform state due to curvature effects. In the Bloch regime,
one observes Bloch walls �BWs� that give rise to spiral
waves around pointlike defects �4,5�.

This scenario changes drastically for discrete systems. In
particular, an anomalous NIB transition was predicted re-
cently for one-dimensional systems, whose signature is the
coexistence of stable Ising and Bloch domain walls �17�.
This fact has deep consequences for the organization of spa-
tially coupled FHN cells, where discretization is crucial for a
realistic description �e.g., of neuronal activity�.

In this paper we investigate numerically the main conse-
quences of an anomalous NIB transition in two-dimensional
�2D� discrete activator-inhibitor systems. In particular, we
consider the following dimensionless nongradient activator-
inhibitor reaction-diffusion model of the FitzHugh–Nagumo
type �1,18,19�:

dui,j

dt
= D�ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j� + ui,j − ui,j

3 − vi,j ,

dvi,j

dt
= ��ui,j − avi,j� , �1�

where ui,j ,vi,j are the field values at the �i , j� cell, � is the
ratio between the activator and inhibitor time scales, and D
is the spatial coupling. Hereafter we choose a=2 such that
Eqs. �1� describe a bistable medium with two linearly
stable homogeneous solutions: P+= �u+ ,v+� �up state� and
P−= �u− ,v−� �down state�, and one unstable P0= �0,0�
�saddle point�. Here u+=−u−=�1−a−1 and v+=−v−=u+ /a.
Note that the up and down states are symmetric under parity
P−=−P+, as a consequence of the system’s invariance:
�u ,v�→ �−u ,−v�.

In a previous work �17�, we considered the one-
dimensional version of �1�. The main result is summarized in
Fig. 1. The D versus � parameter space is organized as fol-
lows: Ising fronts are stable below the DH line �the locus of
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a subcritical Hopf bifurcation�. Stable Bloch fronts exist
above DSN where they emerge through twin saddle-node bi-
furcations. Both lines meet at D=� only, at the point where
the “continuous” NIB transition arises �4�: �=�c=1/a2. For
finite D, i.e., when the system is discrete, there is a region of
coexistence of Ising and Bloch fronts in the �infinite� wedge-
like region between DSN and DH lines. The diagram indicates
that a NIB transition can take place at constant � by changing
the spatial coupling D �20�.

The bifurcation lines DSN,H emanate from the double-zero
eigenvalue point located in the continuum limit, namely the
“continuous” NIB bifurcation point. The degeneracy �an ex-
tra null eigenvalue� arises from the invariance under transla-
tion. The discretization, introduced through parameter D,
breaks the translational symmetry, and together with � fully
unfold the double-zero point. As argued in �17�, the FHN
model �Fig. 1� exhibits one of the universal scenarios that
arise from the inclusion of inhomogeneous terms into the
normal form of the NIB bifurcation �21� �in a more abstract
language referred to as parity-breaking or drift-pitchfork bi-
furcation�.

ISING AND BLOCH DOMAIN-WALL REGIMES

For small spatial coupling—in fact for D�DSN—Ising
fronts are the stable interfaces. Numerical solutions with ran-
dom initial conditions show the spontaneous formation and
coarsening of spatial homogeneous domains P± separating
by IWs. As flat fronts are stationary, the transient dynamics is
controlled by the curvature of the fronts. In particular, cur-
vature reduction leads to a regime of domain growth.

For D�DH, numerical simulations in one and two spatial
dimensions confirm that only Bloch domain walls are stable,
and BWs spiral around pointlike defects in two spatial di-
mensions �6–8,22�.

In both cases the dynamics resembles the traditional one
before/after a continuous NIB transition. Similar structures
and dynamics have been reported, for example, in the de-
scription of the ordering process of domains in optical para-
metric oscillators �7�.

ISING-BLOCH COEXISTENCE

For DSN����D�DH���, Ising and Bloch stable domain
walls coexist. The system only nucleates phases up and
down, but an additional feature of BWs in 2D is that the
domain walls can emerge with opposite chirality in different
spatial regions along the same wall. Even more, zero chiral-
ity is here also allowed. For a better characterization of the
structures, we introduce the “chirality field:” �i,j =ui,j −avi,j
which essentially measures deviation from stationarity, i.e., it
differs from zero only at BW cores, having the sign of the
relative front displacement.

In Fig. 2 we show snapshots of the v-pattern configuration
at three times, for a typical realization of Eqs. �1� obtained
through numerical simulation with random initial conditions.
The chirality field � is also showed. Both fields must be
considered simultaneously to discriminate BWs from IWs.
The nature and dynamics of the observed structures is com-
pletely unique and striking: IWs coexist with BWs along the
same front, with the IWs playing the role of “extended de-
fects” separating BWs. Note that IWs here are dynamical
structures which may grow or collapse, originating a dynam-
ics. In particular, after curvature reduction of BWs, the ob-
served structures are IWs separating BWs. During time evo-
lution IWs are generated or shrunk, depending on the
chirality of the BWs, which fix the sense of motion of the
chiral arms. To illustrate this point, in Fig. 3 we show how an
IW evolves during the “spiraling” as an extended core. In
particular, we can appreciate a kind of “elastic scattering”
between BWs of opposite chiralities, leading to a 	 /2 rota-
tion of the IW’s direction. In Fig. 3 we have used nonflux
�Neumann� boundary conditions �BC� in order to limit the
growth of the IW. These BC preserve the translation and
rotation motions of the Bloch fronts at the boundaries �they

FIG. 1. Regions with different front regimes in the parameter
space for the discrete FHN model in one dimension. Here a=2 and
the solid line indicates DSN���, the locus of the saddle-node bifur-
cation below which the IWs are the only stable interfaces. In the
same way, the dashed line indicates DH���, the locus of the Hopf
bifurcation above which the BWs are the only stable interfaces.
Between these two lines the coexistence region takes place.

FIG. 2. Snapshot of vi,j �top� and �i,j �bottom� at different times
observed in the coexistence regime: �a� t=75; �b� t=150; �c� t
=225. Top: white �black� denotes the P+ �P−� state. Bottom: white,
black, and gray correspond to positive, negative, and null values of
�i,j, respectively. The initial condition is random, dt=0.000 25, and
the values of the parameters are D=0.23 �DSN=0.217�, �=0.2, and
a=2. Note that at short times curvature effects drive the dynamics
and basically BWs are observed. After curvature reduction, IW and
BW coexist macroscopically along the same front. Note that the
IW’s orientation is restricted to the grid directions. Here the grid is
250
250 with periodic BC.
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are not absorbed� leading to a periodic oscillation �both in
length and orientation� of the IW while the arms of the spiral
remain rotating.

As shown above, in the coexistence regime the dynamics
is driven by the BWs, which control the domain growth. In
particular, curvature reduction of IWs does not play any role.
Another aspect of the dynamics is that BWs with different
chirality can annihilate between them, producing domain
evaporation. This mechanism is illustrated in Fig. 4, where
we show snapshots of the pattern arising through numerical
integration from a selected initial condition. Here we can
observe again the coexistence of BWs and IWs for short
time, as well as the interaction between both BWs, which
eventually produces the evaporation of the up domain. Note

that moving pointlike defects are formed during time evolu-
tion. In this case, and in contrast to Fig. 3, the parallel mo-
tion of BWs preserves the pointlike nature of the defects.
The propagation of “traveling fragments” �like those in Figs.
4�b� and 4�c�� has been studied in Ref. �23� and modeled in
terms of diffusion anisotropy.

We remark that in this region of parameter space the sys-
tem is very sensitive to the background grid orientation: IWs
are generated, collapsed and sustained only along the grid
axes. This fact has deep consequences in the dynamics, be-
cause spiral cores lose their stability, and cannot hold the
ends of the arms of BWs. The sensitivity of the IW with
respect to the background directions �which is not observed
outside the coexistence region� can be traced back to the
basis of attraction of IWs in the one-dimensional case. In
particular, IWs are very sensitive to core fluctuations in such
a way that if �ui ,vi� is a stable Ising front in the coexistence
region, the v-displaced profile �ui ,vi±1� is an unstable struc-
ture that decays to a stable Bloch front �26�. Although this is
a global perturbation of the core, stable under more localized
perturbations, it is the kind of �chirality� fluctuations that
fronts experiment in two spatial dimensions due to curvature
effects �24�. These results are robust in the sense that other
discretizations of the Laplacian, e.g., with a nine-point for-
mula �25�, originate a similar dynamics. Figure 5 shows
some snapshots of pattern evolution for the nine-point cou-
pling. Note that IWs can be formed also along diagonals,
following the directions of the grid.

It is to be emphasized that coexistence does not imply
equal stability, being the BW �IW� the stable �metastable�
attractor of the system, as we expect from the weak stability
of IWs. In particular, numerical simulations of Eqs. �1� with
an additive source of white Gaussian noise indicate that the
anomalous transition is observed for small noise intensities,
while strong enough external noise �asymptotically� restores
the continuouslike transition. In this case, coexistence is only
observed during a transient, i.e., before the noise-assisted
decay of the metastable fronts.

FIG. 3. Time evolution of a “spiral” in the coexistence region of
a discrete system closed by nonflux boundary conditions. We show
only the chirality field. The core of the spiral is an IW which
changes size and orientation during time evolution in a periodic
way, even though it preserves the “center-of-mass” core position. In
�a� and �b� the IW is along the x axis, in �c� the core is basically a
point, and in �d�–�f� the IW generated after collision is along the y
direction. The values of the parameters are �=0.2, D=0.26 �DSN

=0.217�, dt=0.000 5; the grid is 210
210 and there is a 60 units
time interval between the snapshots.

FIG. 4. Snapshot of vi,j �top� �i,j �bottom� in the coexistence
regime. The initial conditions are two parallel IWs with a central
“chiral” perturbation in each of them. For large time the up state
eventually evaporates. �a� t=3; �b� t=42; �c� t=75. The values of
the parameters are the same as in Fig. 3 with a grid 210
210 and
dt=0.000 25.

FIG. 5. Snapshot of vi,j �top� and �i,j �bottom� at different times
observed in the coexistence regime for a nine-point spatial coupling
with random initial conditions. The values of the parameters are
D=0.24 �DSN=0.217�, �=0.2, a=2, and the times are: �a� t=240;
�b� t=320, and �c� t=400. Note that the IW’s orientation is again
restricted to the grid directions, including now the same diagonals
of the spatial coupling. Here the grid is 250
250 with periodic BC
and dt=0.000 25.
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CONCLUSION

We have investigated the effects of discretization in a NIB
transition for a 2D array of spatially coupled FHN cells. In
particular, we have verified that, as reported in �17�, discrete
FHN systems have an intermediate regime where both Ising
and Bloch fronts coexist.

In the coexistence regime, the system exhibits striking
features in two spatial dimensions. IWs and BWs coexist, the
former playing the role of extended defect cores. The robust-
ness of these results has been tested with different discreti-
zations of the Laplacian. In all the cases, IWs are only sus-
tained along the grid axes, reflecting the poor stability of IWs
against relative translation between both activator and inhibi-
tor components.

The same scenario is observed when external fluctuations
are included, although for strong enough external noise the
coexistence takes place only during a transient, reflecting the
metastable character of IWs in this region. Note that a com-
plete route from IWs to BWs was presented at � constant,

only by changing the strength of the spatial coupling. In this
sense, discretization allows an “orthogonal” route �D varies,
� fixed� to observe a NIB transition, even in the presence of
a strong external noise.

Finally, we want to remark that the scenario presented
here for the FHN model should be found in other bistable
systems undergoing NIB bifurcations. As claimed in our pre-
vious work �17�, Ising-Bloch coexistence is a generic effect
of discretization. Therefore, the two-dimensional dynamics
studied in this paper should be observed in a wide range of
discrete systems for which the FHN model serves as a ca-
nonical example.
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